Basic optical layout of the light microscope. Aberrations. Microscope objectives. Magnification. Numerical aperture. Microscope photometry. Detectors. Noise. Contrast methods (fluorescence, phase contrast, DIC). Resolution. Fourier methods. Optical transfer functions. Three-dimensional imaging in microscopy. Sampling and reconstruction of image data. Confocal microscopy. A brief introduction to tunnel and atomic force microscopy, electron microscopy, scanning near-field optical microscopy and X-ray microscopy.
FSK3501 Physics of Biomedical Microscopy, Extended Course 7.5 credits
The course covers the physics and technology of microscopic imaging methods, with special emphasis on applications within the life sciences. It is similar to the second cycle course SK2501, except you also do a small project (preferrably related to your research).
Information per course offering
Information for Autumn 2024 Start 28 Oct 2024 programme students
- Course location
AlbaNova
- Duration
- 28 Oct 2024 - 13 Jan 2025
- Periods
- P2 (7.5 hp)
- Pace of study
50%
- Application code
51585
- Form of study
Normal Daytime
- Language of instruction
English
- Course memo
- Course memo is not published
- Number of places
Places are not limited
- Target group
- No information inserted
- Planned modular schedule
- [object Object]
- Schedule
- Part of programme
- No information inserted
Contact
Course syllabus as PDF
Please note: all information from the Course syllabus is available on this page in an accessible format.
Course syllabus FSK3501 (Spring 2019–)Content and learning outcomes
Course contents
Intended learning outcomes
After completing the course the student should be able to:
- adjust the illumination system to obtain optimal performance in transmission microscopy.
- select a suitable light source and optical filters, and correctly adjust the illumination system for fluorescence microscopy.
- select a suitable objective (correction, immersion etc) for various types of microscopic investigations.
- select a suitable contrast method (phase contrast, DIC, fluorescence, darkfield etc) and correctly use this technique to obtain high-quality images.
- calculate the expected image quality regarding resolution and signal-to-noise ratio for different practical imaging situations.
- understand and be able to describe the physical limitations for microscope performance concerning resolution and signal-to-noise ratio.
- describe performance for different types of microscopes by using (and in some simple cases calculating) optical transfer functions.
- select a suitable sampling density for digital image recording in microscopy.
- do computer processing of microscopic images to visualise three-dimensional structures.
- perform quantitative measurements in microscopic images using a computer.
- extract relevant information from a scientific publication and present this in the form of a seminar.
Literature and preparations
Specific prerequisites
Admitted to PhD studies in Physics or related fields of study.
Basic knowledge of waves, geometrical optics and photometry (course SK1100 or similar). Elementary knowledge of the Fourier transform.
Equipment
Literature
Carlsson, K. Imaging physics, KTH.
Carlsson, K. Light microscopy, KTH.
Lab. instructions.
Scientific publications.
Examination and completion
If the course is discontinued, students may request to be examined during the following two academic years.
Grading scale
Examination
- LAB1 - Laboratory work, 2.0 credits, grading scale: P, F
- SEM1 - Seminar, 1.5 credits, grading scale: P, F
- TEN1 - Exam, 4.0 credits, grading scale: P, F
Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.
The examiner may apply another examination format when re-examining individual students.
Written examination (TEN1; 4 hp, grading scale P/F), completed laboratory course (LAB1; 2 hp, grading scale P/F) and seminar presentation (SEM1; 1.5 hp, grading scale P/F)
Opportunity to complete the requirements via supplementary examination
Opportunity to raise an approved grade via renewed examination
Examiner
Ethical approach
- All members of a group are responsible for the group's work.
- In any assessment, every student shall honestly disclose any help received and sources used.
- In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.